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 Field of medical image analysis is evolving at a rapid pace. New advancements have 

introduced big challenges in analysis and information extraction from the generated images. 

Usually the scale of input data is so immense that it needs very efficient and smart algorithms 

to process intended outcomes. Magnetic Resonance Images (MRI) is one of the primary 

sources for morphometric analysis. Frequently used techniques for this kind of analysis are 

Principal Component analysis (PCA) and a more robust Incremental Principal Component 

Analysis (IPCA). Both these techniques apply complex algorithms for producing statistical 

shape models which ultimately show variance in clinical images. Variance is primarily 

detected and measured in the articular cartilage. Statistical assessment of cartilage volume and 

surface area estimation gives an indication of osteoarthritis severity. 

This research paper proposes an agile framework for segmentation of images of the knee by 

using Active contour model. Image texture information is merged in the model with the help of 

effective mathematical functions. Vector valued geodesic was used during segmentation and 

also to detect and measure variance in the image at pixel level. By use of efficient algorithms 

and mathematical tools this technique showed promising results in handling noise and non-

uniform intensities within the image. The algorithm effectively provided a quantitative 

cartilage assessment which could help physicians in classifying osteoarthritis stages. 
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I. INTRODUCTION  

In the field of medical image analysis, machine learning 
techniques have showed promising results in extraction of 
useful information from big datasets. As the data volume is 
huge in image analysis so to process this image data very 
efficient and smart algorithms are needed. Recent work in this 
field are related to segmentation of the different human 
organs like heart, liver and structures of the musculoskeletal 
system. In which very complex and computational intensive 
algorithms were used [4]–[6]. Magnetic resonance imaging 
(MRI) is the top imaging modality for noninvasive 
assessment of the articular cartilage [3], and cartilage decline 
can be detected using quantitative MRI analysis. Most of 
quantifiable assessment studies in medical imaging require 
accurate segmentation of the clinical image data [3]. It is 
considered to be one of the most crucial steps in this 
technique. The use of a dedicated low-field MRI has its pros 
and cons. The negatives are related to image quality with 
lower resolution and more difficulties in incorporating 
features such as fat subdual, however fat subdual has been 
magnificently executed recently for low-field MRI [11]. 
Typically physicians manually segment cartilage slice-by-

slice but this method is time intensive and error prone [2]. If 
manual labor is linked with the examination and 
quantification of MRI data in clinical studies, one more cost 
feature is presented. PCA is the most commonly implemented 
technique for subspace learning. There is a shortcoming in 
this technique, after the initial statistical shape model (SSM) 
has been computed if new data arrives the whole shape model 
has to be recomputed which requires access to the whole 
dataset. As the dataset increases the matrices become very 
large on which PCA operates. The larger the matrices the 
more compute power it needs to process them. Another 
version of PCA was introduced by S    j et al [8] which is 
more robust in comparison to the traditional one. This 
technique extracts useful information from a large dataset and 
discards the rest of the data which is not useful. It has 
partially improved the computational complexity but it still 
requires access to all data. To overcome the shortcomings in 
PCA a new modified version of PCA was introduced named 
as IPCA [12]. Incremental Principal Component analysis 
(IPCA) is more advance and efficient as associated to PCA. It 
requires access to the initial input data (MR Images) only 
once when it is added to model. After processing, only 
significant data is stored and all other less important data and 
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noise is discarded in this way it needs less storage and 
compute capacity. As IPCA maintains only relevant 
information from the training data it has faster computational 
time than batch PCA. It allows the efficient addition of new 
data to the model without repeatedly processing the original 
dataset. This method proved to be very effective and accurate 
in comparison to the traditional PCA. On the given dataset of 
images an automated segmentation algorithm was applied 
which extracted Bone-Cartilage interface, bone segmentation 
and cartilage segmentation. After the segmented images were 
available eigenvectors and eigenvalues were identified. 
Eigenvalue represents the variance in the dataset. After this 
all vector were concatenated into a matrix. Covariance of this 
matrix was computed and in the next step singular value 
decomposition algorithm was applied. The output of this 
algorithm was a principal component, eigenvalue and a shape 
coefficient. In the last step a statistical shape model was 
generated. A few studies have previously explored the use of 
IPCA in medical image analysis and/or statistical shape 
modeling. Salehian et al. [10] showed benefits of the IPCA in 
computationally expensive principle geodesic analysis of 
diffusion tensor data. Wang et al. [11] applied IPCA for 
learning subject specific shape variations in combination with 
a SSM of normal shapes. This adaptive mixture model was 
used for segmentation of abnormal structures, rather than for 
generation of large learning databases. A few advantages of 
the IPCA subspace learning are, it has faster computational 
time than batch PCA, it maintains only relevant information 
from the training dataset and it allows the efficient addition of 
new data to the computed model [12]. 

This research is structured in a way that at first a brief 
introduction was given of the current tools and techniques 
used in clinical image analysis. Related work and domain 
specific techniques were explored. Next a detailed 
implementation of relevant technique was explained. All the 
algorithms used in Active contour models were discussed and 
explained in detail. Later experimental verification steps were 
revealed. At the end based on the experimental results a 
conclusion was made 

II. IMPLEMENTATION 

A. Geodesic snakes 

The segmentation techniques described in [4] require some 
amount of manual collaboration except for the method of Pakin 
et al. [12], the 3-D procedures are evaluated only on relatively 
minor data sets which evaluate their methods on scans from 
osteoarthritis test cases. In this research a model was proposed 
that can fully repeatedly segment cartilage in both healthy and 
osteoarthritic knee scans. Selected segmentation method was 
the first step in a quantitative fully automatic cartilage 
valuation and is principally envisioned for clinical studies by 
low-field MR scanners. The segmentation algorithm was built 
on a one versus all approach of combining binary approximate 
NN classifiers which is described in [14]. Algorithm also had 
an iterative place alteration process that was intended to correct 
for the variations of the placement of the test subject [15]. 
Segmentation end product was assessed not only to manual 
tracings of a radiologist but also in terms of accuracy. This 
technique is used for detection of object boundaries. It 

measures the internal geometry of the object using active 
contours. Both interior and exterior boundaries were detected 
by splitting and merging contours. A polygon was generated on 
the targeted image by setting a number of contours on the 
image. In result of this a set of contours were populated. Curve 
evolution was used to lessen the set of vertices of the polygon 
to a subset of vertices only having relevant and genuine 
information about the original image as shown in figure 1. A 
geodesic curve is the minimal distance between given points. 
The mathematical modeling was based on the theory of curve 
evolution [10]. An efficient algorithm was used for 
implementation of this curve evolution. The algorithm ensured 
sub-pixel accuracy [14]. Active contour approach used was 
both geometric and topological independent. Algorithm 
produced anticipated results after a number of iterations. This 
iterative process improved the segmentation process at every 
repetition. All features were examined in every iteration and 
important features were delineated. The dataset was segmented 
and dimensionality was reduced at each step. After number of 
iteration met the defined threshold algorithm stopped. At this 
stage there was no room for any significant improvement in the 
segmentation process. The boundaries delineated were pretty 
much accurate in comparison to the original features in the 
data. The feature selection system provided optimum results. 
Intensity and position of the concerned features both are highly 
relevant in view of physicians. The algorithm also adopted 
mathematical tools to precisely measure the geometry of the 
object. A third order derivative mathematical tool was used in 
the algorithm. A mathematical minimization function was used 
to achieve desired results on multi-valued images [15]. Images 
were represented in form of vectors. These vectors were 
eigenvectors and the corresponding values were known as 
eigenvalues which were used in the mathematical calculations 
[16]. The eigenvalues helped in spatial averaging of the 
objects. Tibial and Femoral compartments are primary 
classifiers during the segmentation process.  

 

B. Variance Detection 

A robust algorithm was implemented to classify the 

variance in the image. Although MR images vary in 

intensity but they have almost uniform texture throughout 

the regi n th t’s why it is difficult to identify variance in 

two images. The algorithm used initial contours and had a 

robust capability to converge the contours automatically 

over the curve. Image texture was also incorporated in the 

analysis [7]. It facilitated the identification process of image 

variance. The algorithm computed variance at pixel level. 

Most of the mathematical modeling implemented in the 

algorithm was done with the help of conventional snakes 

formulation. After a number of iterations the contours 

converged with respect to the curve. For good results the 

number of iterations were set to a minimum of 10 iterations. 

The algorithm also showed spatial relationship among the 

features of the targeted object. The final model was best fit 

in terms of scaling, orientation and shape. 

C.  Pseudo code 

 

Input: Grey scale images of resolution [256x256] 
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Output: Segmentation of grey scale images, Variance 

Value 

Foreach Grey Scale Image k, k=1: To do 

Compute (Mathematical Function for geodesic 

snakes); 

 Calculate InitialModel for Segmentation; 

 Calculate Contours on previous output; 

 Incorporate ImageContrast on contoured image; 

 Calculate Variance (Make Comparison); 

End 

III. EXPERIMENTAL RESULTS 

This research has introduced automation in segmentation as 
well as image analysis for variance detection. It took around 
two hours for a trained radiologist to manually segment MR 
images and then detect the difference in the images to predict 
osteoarthritis stage. Whereas the algorithm proposed in this 
paper has automated this process and it took approximately ten 
minutes to process all this. The hardware platform used was a 
standard desktop 2.8 Ghz PC. Experimental verification was 
done in phases. 

 

A. Manual Vs Automatic Segmentation 

The 45 grey scale images of the knee were segmented 
both manually by a radiologist and by the algorithm [1]. Each 
image was of resolution 256 x 256. The Femer and Tibia were 
segmented independently and boundaries were identified. 
Boundaries were well approximated by the algorithm. The 
initial contours defined the curves in the structure. The 
segmented structure is then overlaid on the original image for 
better understanding [8]. Automatic estimates for tibial 
volume were 10 % better than manual.  There were also 
significant improvements in the groups mean of overall 
objects. With this algorithm the problem of overestimating 
the object boundaries was also solved. As the algorithm 
implemented robust probalistic models the tibial and femerial 
border were clearly delineated. The medial cartilage volume 
was also segmented during this phase which later helped in 
variance detection. Segmentation phase also involved the 
absolute volume and area differences which moved between 
10% to 12% as compared to manual segmentation. The 
algorithm adopted the technique from Bland–Altman plots for 
area and volume estimation [13]. The automatic segmentation 
process generated average sensitivity of 81.1 % in 
comparison to manual segmentation.  

Automatic position normalization was also done by this 
algorithm and it yielded an average sensitivity of 81. 9 % in 
comparison with the manual technique. Low contrast between 
tissues near to the boundary were also measured and it helped 
in boundary delineation.  

B. Classification of tibial and femoral cartilage 

Three object classes were defined in context of cartilage; 
tibial cartilage, femoral cartilage and background. 
Geometrical relationship among these objects were 

established. A complex probalistic model was defined to 
measure these objects in the original image. As the 
background was dominant in all images it was very difficult 
to extract tibial and femoral cartilage. A sequential 
background selection algorithm was used for this task [9]. It 
helped in extraction of region of interest and discarded the 
rest of the background. The algorithm added one feature at a 
time in the model and the background was sequentially 
removed from the images for better visibility and 
understanding. Features were examined in every iteration of 
the algorithm which helped in weighting important feature 
separately. A threshold was defined for feature extraction. In 
established test bed after 25 iteration intended results in 
context of feature classification were seen. It was observed 
that the signal to noise ratio was not high enough at the 
contour of attention, but still the algorithm was able to detect 
it accurately. Furthermore, the algorithm efficiently spotted 
the contours with advanced value between markers, which are 
not constantly the contours of attention. The usual way of 
determining the number and approximate location of the 
regions provided by the dataset consists in the adjustment of 
the homotopy of the function to which the algorithm is 
applied. This amendment was carried out Via a mathematical 
morphology operation, geodesic reconstruction [14], by 
which the function is altered so that the minima can be 
executed by an exterior function. 

C. Variance calculation 

A complex mathematical model was adopted to detect 
variance in the clinical images. The algorithm was able to 
detect large intensity variation in the bone region. It also 
incorporated mathematical energy function. A quantitative 
analysis was done in which main focus for evaluation was on 
the volume and surface area of articular cartilage. The 
assessment was done on the segmented image acquired from 
the prior step. The algorithm estimated surface area as well as 
volume. Kellgren– Lawrence index radiographic score was 
used to measure variance in the cartilage. The readings with 
KL i = 1 were considered borderline or mild cases of 
osteoarthritis while any readings above KL i >= 2 were 
considered severe osteoarthritis. Classical quantitative disease 
identification for OA was the articular cartilage capacity, 
thickness and surface area. 

IV. CONCLUSION 

Implementation of Active contour framework was proposed in 

this research effort. During the test bed development a dataset 

of 45 grey scale images of knee were taken each having 

resolution of 256 x 256. Femer and Tibia were primarily 

focused during the segmentation process. Both manual and 

automatic segmentation techniques were used and results were 

compared. Automatic segmentation technique as anticipated 

proved to be more effective in comparison with the manual 

technique. Automatic segmentation not only outperformed 

manual technique in efficiency but it also showed better 

results in accuracy. The algorithm delineated the structure 

boundary based on mathematical approximation. Initial 

contours helped in defining the curves in the structure. The 

segmented images were overlapped on the original images for 

better understanding. Segmentation algorithm also 
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incorporated image contrast information for better boundary 

delineation. Variance was computed on the segmented images. 

Quantitative analysis was done to measure articular cartilage 

deterioration. Kellgren– Lawrence index radiographic score 

was benchmark for cartilage assessment. The quantitative 

analysis results were mapped to KL index and osteoarthritis 

grades were identified. 

The use of active contour framework showed 

promising results in segmentation and variance detection in 

clinical images of the knee. Although it used complex 

mathematical and statistical tool but during the test bed 

performance analysis algorithms performed very efficiently 

and accurately. The research results will help radiologists and 

physicians in determining osteoarthritis more effectively.  

One direction for future work may be to incorporate 

other texture measures of the MR Images. These measures 

may improve the results for this application. Such measures 

include orientational filters and gray-level co-occurrence [10]. 

Also textures across multiple scales can also be very useful in 

enhancing image. 

 

Figure.1:  Sagittal MRI of Knee before Segmentation 

 

Figure.2. Sagittal MRI of Knee after Segmentation 
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