

28

The Evolution of WordPress and Django Web Frameworks Using Lehman’s Laws

M. Murad1, M. W. Ashraf1

1Department of Computing, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan

ARTICLEINFO ABSTRACT

*CorrespondingAuthor:

muraddw@gmail.com

DOI:
10.24081/nijesr.2019.1.0007

Keywords:
Common Ratio, LOC, Lehman’s Laws

Django,Software Evolution, WordPress.

In recent time, the evolution of web applications have gained importance over the web

development process and the factor of web evolution cannot be ignored by web developers. Web

development has become complex and challengeable for web developers. The process of

software evolution played an important role during the development of the software. Millions of

web application have been developed every year around the world It has included various

approaches, tools, and frameworks to reorganize the web applications with an improved version.

Research has been shown that there are no proper and systematic techniques is available for

evolving web applications. This special article has been written to make a comparative analysis

of WordPress and Django web framework using Lehman’s laws of software evolution. It has

been found that the six out of eight Lehman’s laws found valid during the evolution process for

web frameworks.

I. INTRODUCTION

World Wide Web (WWW) has been matured over the last

couple of decades. In recent time, web development is the most

popular field in computer sciences. Different programming

languages are being utilized to develop web applications. In this

special article, we have conducted a systematic study to evolve

web applications using Lehmanlaws for evolving the software.

In the past, onlydesktop applications were being evolved using

Lehman’s Laws, but in this case study, two popular web

applications named WordPress and Django web framework

have been analyzed using these laws. These two frameworks

have strong competition in the web development environment.
Both frameworks have their own features. [1]Wordpress

provides dynamics platform for developing web application and

blogs. It was firstly developed in the year 2003 by Matt

Mullenwegand Mike Little. It is an open source and freely

available at online repositories such as www.openhub.com and

www.github.com. Research has shown that over 60 million

websites including top 10 websites based on WordPress since

2018. Wordpress is a combination of different programming

language. Table 1 showed detailed information about language

breakdown of WordPress version 5.1[2].

Django is another popular and uprising framework for

developing web applications. It is based on Python

programming language. It was developed in the year 2005 by

Adrain Holovaty and Simon Willison. It is open source and
also freely available at online free repositories[2].

Interestingly, Django was named after a French-based Jazz

guitarist Django Reinhardt. Django has been designed to

provide a simplified approach for developing web

applications. In the year 2018, it was competing with C++ and

Java and was ranked at No. 4 with other popular languages.

Django framework provided several features for developing

web applications such as session, template forms, caching,
user authentication, testing, etc. There are over 4000 packages

available for Django for outlining, assessing and debugging.

Django web framework is also a combination of different

languages. Table 2 has contained information of language

breakdown of the latest version of Django 2.2.0.

TABLE 1. Language Breakdown of WordPress Web Framework [2].

Languages Line of

Code

Comm.

Lines

Comm.

Ratio

Blank

Lines

Total

Lines

%

PHP

314780

146563

31.8%

66,352

527695

62.6%

Javascript

155460

30188

16.3%

21464

207112

24.6%

CSS

64018

3687

5.4%

12080

79785

9.5%

HTML

24043

138

0.6%

1,834

26,015

3.1%

XML

2372

170

6.8%

198

2700

0.3%

TABLE 2. Django Web Framework language Breakdown[2].

Languages Line

of

Code

Comm.

Lines

Comm.

Ratio
Blank

Lines

Total

Lines

%

Python

248106

49736

16.745

59493

357335

89.4%

JavaScript

18,927

3934

17.2%

4380

27241

6.8%

CSS

4,690

150

0.5%

529

5843

1.2%

HTML

4099

19

0.5%

529

4647

0.8%

mailto:muraddw@gmail.com
https://en.wikipedia.org/wiki/Matt_Mullenweg
https://en.wikipedia.org/wiki/Matt_Mullenweg
https://en.wikipedia.org/wiki/Mike_Little
http://www.github.com/

29

Other

1450

18

3.8%

99

4573

1.1%

It has been seen that there is tough competition between PHP
and Python over the last few years. This special article has

been written to check the progress of both web frameworks.

For this purpose, we decide to implement famous Lehman

laws for evolving the software [3]. The purposed study has the

first footstep to evolve web applications using Lehman laws.

These laws were first developed in 1976 by Meie Manny

Lehman, a British software engineer. He designed a series of

eight laws for software evolution. According to Lehman, it is

important for a software to remain stable, popular among the

software developer and the customer’s or organizations. If the

software has evolved on a regular basis so, it cannot be

survived for a longer period of time. We will apply all eight
laws on both web frameworks and will check the validity of

each during the evolution process.

II. RELATED WORK

In this section, we will cover the literature related to web

evolution.[3]examined 30 different PHP projects using

Lehman's laws. They concluded that the factor of constant

growth can cause the maintenance of software at a

continuous level. They also concluded that the quality of web

applications has not decreased over a period of time.[4]

emphasized the evolution of WordPress. According to the

author, WordPress can only stay at the top if it will evolve on
a regular basis otherwise it will be lost its credibility among

the web developers and users around the world. It can only

be possible through contributing proper development, testing,

training. The factor of growth rate and community have paid

an important role during the evolution process.[5] explained

the importance of Django and its architectural pattern and

which is based on the model view controller. [6] shared the

detail of web evolution. They adopted a model-based

approach to analyze irregularities and also make sure to

increase the quality of web applications. [7] highlighted the

importance of web development and growth. They analyzed

the factors of usability of web applications and user
satisfaction through different evolution methods. They

purposed a method for early deduction and also predict

problems related to usability of web applications. [8]After

explained the fact about web evolution system. The author

has analyzed the web evolution system over the last 15

years. He further added that the future of web evolution is

not yet over. He emphasized three factors, security, testing,

and access.Web evolution can play a very important role in

large scale data analytics. It can also solve certain problems

and the limitations of web applications. They also

emphasized on systematic web evolution because of better
development of web applications[9]. [10] explained the

factor for evolving web applications. They have focused on

three important issues, Process development, maintenance

and re-engineering the application. According to the author,

new technologies for web development can play an important

role in better development of the software.

[11] has focused on maintaining web applications.

According to the authors, maintainability can play an

important role because it may reduce maintenance cost,

controlling quantitative metrics and model for future

predictions.[12]have been reviewed different dimensions for

the sustainable and longer term for the web application

system. The factor of change played a critical role in any web
application. The author has presented different statistical

observations to measure the level of changes in web

applications [13].[14] have analyzed locally customer’s

requirements with the requirement belongs to the global base

environment. [15]have been described as the process of

analyzing and combining the large size of the source program

is not a proper way and systematic way to check the progress

of the software. [16] have shared their experience in software

evolution and its related problems. Further, it is an important

idea to build a powerful model for evolving the software.

[17] haveproposed a code flattering technique is used to

remove the complexity from code and made the code simple.
[18] has shared the data mining technique for analyzing the

pattern of input request by the users. [19] explained the

evolution process requires deep analysis of software. The

factor of certain changes has directly affected the process of

software evolution. The more changes in the software can

cause to increase the complexity, cost, and behavior of the

software[20]. [21] Emphasized on a deeper level of software

evolution process because of only deep analysis enables

developer better understanding about the software. [22] Has

focused on the performance of the large size of software abs

also analyzed the software to gain information about the
software capability to handle certain challenges regarding the

development of large size software. [23] has wanted to

enhance the feasibility of software and shifted uncertain

situations to well organize software development and its

effective evolution. [24] have been found several factors for

software evolution that must be investigated. These factors

included, unused of code, removing functions, utilization

outsourcing libraries, API’s and complexity of API’s. [25]

concluded that the four out of eight laws found a true result

for selected software projects for evolution and also found

distinguishable distinctions. [26] explained the factors of

software evolution. These factors included certain changes,
costs, and efforts for developing software. [27]has initiated

that the growth rate of Linux kernel has increased over a

period of time because of increasing its size (source code).

[28] have confirmed that the four out of eight laws are

applicable for evolving the software system. [29] have

described that the complexity can only be reduced through

30

proper teamwork of software developers and restructuring the

source code from complexity to normality. [30]have

explained their experiences of utilizing Lehman’s law in their

purposed work and found different results and variations in

the conclusive results of each law during the evolution

process. [31] shared their work by describing that the four out

of eight laws have shown slight reflection in the proposed

graph.[32] explained that the software quality has directly

linked with software evolution. The change in the declining

quality of particular software is a high-risk factor. When a

software system deal with requirement changes the chances

of software aging is also increased. The authors have
highlighted the challenges that directly affect the evolution

process.[33] described the software complexity factors.

During the software maintenance process, complexity metrics

have created an important role and also made the situation

more complex and critical for software developers. The

authors have utilized seven different software metrics for

evolving three software. Their result indicated that the

complexity factors directly affect the growth, integration,

understanding, and design of the software.[34]examined the

software complexity using Lehman Law. They have utilized

two different complexity factor such as cyclomatic and
interface complexity. To check the validity of law was their

major aim in their empirical research. They applied the law

on four open source software system. They conclusively

found that the cyclomatic and interface complexity has

increased by version to version.[35] expressed that the

process of software evolution. They applied Lehman Law on

two open source software system. They have concluded that

few o laws have been determined their validity during the

evolution process. Due to the open source nature of the

software, it has a complex to evolve using Lehman’s Laws.

[36]explained that software engineering has required a

scientific based approach to evolving software. Lehman’ law

was the first footstep towards the evolution of software on

scientific ground. These laws have been based on the factor

of change in the software. [37]applied Lehman laws on
mobileapplications. Three out of eight laws have been three

out of eight laws on selected mobile applications. They also

compared the results of a mobile application with the desktop

application with the same features and data. They

conclusively found that the law of continuing change has a

similar result for both mobile and desktop application but

found variations in the other two laws, increasing complexity

and declining quality. [38]Compared to several scripting

languages. They reviewed different characteristics of

languages based on selected criteria and which has included

defined applicability, popularity, users, learning and period of
the language. [39] described that the software has the ability

to accommodate certain changes. They applied Lehman’s law

and found that the factor of size and complexity have

gradually increased over a period of time. Due to growth in

the software, it has also been found that the quality of the

software is also decreased. [40] software evolution process is

a continuous process and which is directly connected with

feedback of the software. The authors have described the

challenges related to software evolution process in a real-

world environment.[41] have explained that the software

evolution process over the period of the last thirty years of

time span. According to the author, the evolution process has

played a significant role. The laws of evolving the software

arethe first scientific study and also provide a basis for future

development of rules for the software evolution process.

III. THE CONTRIBUTION OF MEIR MANNY LEHMAN FOR

SOFTWARE EVOLUTION

The relationship between Meir Manny Lehman and the
field of evolving the software is spanned over 30 years. He
was the man who presented systematic laws for software
evolution way back in 1974. [42] Brief summary of each

individual law is described in table1. [43] investigated the
effects in term of size, changing factor and growth rate of the
module per release. [44] explained about critical situations

that may arise during the evolution process of software. The
authors have contributed their work in the field of software
evolution.

TABLE 3. A brief description of Lehman’s Rules for Software evolution.

Law

Name Description

1 Continuing
Change

Software changes over a period of
time

2 Increasing
Complexity

Complexity is also increased

3 Self-
Regulation

Software evolution should be self-
regulated.

4 Organizational
Stability

During Software evolution,
Organizational cannot lose its

stability
5 Conservation

of Familiarity

Evolution process cannot affect the
familiarity of software.

6 Conservation
of Growth

During evolution Process, it may
increase the growth

7 Declining
Quality

During the Evolution Process, it
cannot lose its quality

8 Feedback
System

The feedback system can decrease
the growth of software system

31

IV. RESEARCH QUESTION

Research Question:Is Lehman’s laws can be validated for

Django and Wordpress web framework?

V. CRITERIA FOR SELECTING CASES

To select the projects for evolution, the

following criterion has been set. It includes the

following important points,

i. The source code should be available online.

ii. The object-oriented based project will be utilized for

evolution.

iii. Projects should be varying in size and different versions.

VI. SOFTWARE METRICS FOR DATA ANALYSIS

To check the validity of each Lehman’s laws, the

following table indicated that each law has been enclosed

with appropriate variable (Ei….Eviii).

TABLE4. Software Metrics for Data Analysis.

Law(s) Specified Variable Data

Investigation

1 Ei = Days Between Releases

(DBR)

Each Law will

evolve using:

 Trend
Test

 Excel

Graph

2 Eii = Size of applications

(KB)

3 Eiii= Incremental Changes

 in LOC

4 Eiv= Number of Comments

5 Ev=Rate of Modifications

6 Evi= Line of Code

7 Evii= Common Ratio

8 Eviii= Line of Code

VII. STATISTICAL ANALYSIS OF DATA

The purposed process for data analysis started from the
extracted all files from selected projects (Django, Catalyst,

and Wordpress). Then software metrics have been selected
from the extracted files at class levels. Each metrics have

been calculated and also been utilized to validated the

Lehman’s laws on each project. The whole process is drawn

in the Fig. 1. It includes the following,

i. Each Lehman Laws have defined through. Variable

(Ei...Eviii). Different software metrics are assigned to

variables and calculated.

ii. The general hypothesis for the purposed study is:

H0 = Software metric E has no trend.

H1 = Software metric E has a trend.

iii. The results have been shown in MS-EXCEL

based trend line analysis.

Figure 1. Process of Data Analysis.

VIII. RESULTS AND DISCUSSION

In this section, each framework has been evolved using

different software metrics such as Line of code, Size,

Continuing Change

Increasing Complexity

Self-Regulation

Conservation of

Organizational

Stability

Conservation of

Familiarity

Continuing Change

Declining Quality

Feedback System

Source Code (Django, &

Wordpress Web

frameworks)

Extracting Data

(Python,PERL &

PHP code)

Metric Values

(LOC,DBR, SIZE

,CR)

Results

(Trend Analysis)

(Excel Graphs)

32

Common Ratio. Each Lehman law has been examined against

each individual framework (Django and WordPress.

i. Implementing laws of Continuing Change.

Software metrics Ei =DBR (Days Between Releases) has

utilized to measure the validity of this law. Table 3 Contained

the information of Days Between the release of each

framework. Similarly,Fig. 4 and Fig.5 represented a graphical

representation. Conclusively, both frameworks have shown a

trend and new versions have been launched on a regular

basis. It indicated the validated the law of continuing change.

TABLE 5. Days Between Release of Django and WordPress[2]

Django

Version(s)

Days
Between
Release

(DBR)

 WordPress
Version(s)

Days
Between
Release

(DBR)

1.3 340 4.0 166

1.4 192 4.1 127

1.5 205 4.2 107

1.6 211 4.3 112

1.7 244 4.4 126

1.8 244 4.5 128

1.9 246 4.6 110

1.10 242 4.7 184

1.11 242 4.8 160

2.0 243 4.9 386

Figure 2. Trend Line Analysis of Django using DBR.

Figure 3. Trend Line Analysis of WordPress using DBR.

ii. Implementing the Law of Increasing Complexity

The variable Eii = Size of Application has utilized to check
the validity of the law.Table6. has contained information
about the size of both frameworks by year. Fig.4 and Fig. 5
have shown a positive trend. Therefore, it indicated that
validityof the law.

Table6. Different Versions and Sizes of Django and WordPress [2]

Django

Version(s)
Size (Kb) WordPress

Version(s)
Size (Kb)

1.3 6200 4.0 6300

1.4 7400 4.1 6400

1.5 7800 4.2 6600

1.6 6500 4.3 6800

1.7 7200 4.4 7300

1.8 7000 4.5 8000

1.9 7200 4.6 8200

1.10 7400 4.7 8300

1.11 7500 4.8 8500

2.0 7600 4.9 9900

Figure 4. Trend Line Analysis of Django using Size of the framework.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1.3 1.5 1.7 1.9 1.11

D
a
y

s
B

e
tw

e
e
n

 R
e
le

a
se

s

Versions

Djnago Web Framewrok

Size (kb)

Linear

(Size

(kb))

0

100

200

300

400

500

4 4.2 4.4 4.6 4.8D
a
y
s

B
e
tw

e
e
n

 R
e
le

a
se

s

Versions

WordPress Web Framework

Days

Between

Release

(DBR)

0

2000

4000

6000

8000

10000

1.3 1.5 1.7 1.9 1.11S
iz

e
 o

f
F

r
a
m

e
w

o
r
k

 i
n

K
B

Versions

Django Web Framework

Size

(kb)

Linear

(Size

(kb))

33

Figure5. Trend Line Analysis of WordPress using Size of the framework.

iii. Implementing the Law of Self-Regulation

The variable Eiii= Incremental Changes in LOC has utilized

to check the validity of the laws.Table 7 contained the

information of anIncremental Changes in the line of code per

year and graphical illustration (Fig.6 and Fig. 7) indicated a

positive trend which also indicated the validity of the law for
both web framework.

TABLE 7. Incremental Changes in LOC of Django and WordPress [2].

Year Incremental

Changes in

LOC of

Django

 Year Incremental

Changes in

LOC of

WordPress

2010 96091 2010 138849

2011 134958 2011 145460

2012 158140 2012 162917

2013 166569 2013 202699

2014 198748 2014 287255

2015 219740 2015 359046

2016 246711 2016 415831

2017 257201 2017 481668

2018 80288 2018 576357

Figure 6. Trend Line Analysis of Django Incremental Changes.

Figure 7. Trend Line Analysis of Django usingIncremental Changes

iv. Implementing the Law of Organizational

Stability

The software metrics Number of Comments have utilized to

check the validity of the law. Table8 analyzed through
graphical illustration (Fig. 8 and Fig. 9) and a positive trend

has been found and that validated the law.

TABLE 8.Number of Commentsin LOC of Django and WordPress [2].

Year Number of

Comments in

Django

 Year Number of

Comments in

WordPress

2010 48594 2010 41239

2011 38260 2011 47154

2012 43119 2012 49953

2013 40525 2013 60936

2014 46879 2014 91947

2015 48283 2015 118036

2016 52697 2016 148600

2017 52816 2017 175528

2018 53476 2018 180761

0

2000

4000

6000

8000

10000

12000

4 4.2 4.4 4.6 4.8

S
iz

e
 o

f
F

r
a

m
e
w

o
r
k

 i
n

 K
B

Versions

WordPress Web Framework

Size

(Kb)

Line

ar

(Size

(Kb))
0

50000

100000

150000

200000

250000

300000

In
c
r
e
m

e
n

ta
l
C

h
a
n

g
e
s

in

F
r
e
m

w
o
r
k

Year

Incremental Changes in LOC of Django

Incrementa

l Changes

in LOC of

Django

Linear

(Increment

al Changes

in LOC of

Django)

0

200000

400000

600000

800000
In

c
r
e
m

e
n

ta
l
C

h
a

n
g

e
 i

n

L
O

C

Year

Incremental Changes in LOC of WordPress

Incremental

Changes in

LOC of

WordPress

Linear

(Incremental

Changes in

LOC of

WordPress)

34

Figure 8. Trend Line Analysis of Django usingNumber of Comments.

Figure 9. Trend Line Analysis of WordPress usingNumber of Comments.

v. Implementing the Law of Conservation of Familiarity

The software metrics “Ev =Modifications in files” has

utilized to check the validity of the law. Table 16 contained
the information all modification in number over a period of

time for the Django and WordPress web frameworks. The
graphical representation (Fig. 8 and Fig. 9) showed slightly

inclination. This inclination did affect the validity of the law.
The graphical illustration (Fig. 16) showed a positive trend

and therefore it validated the law.

TABLE 9.Modifications in LOC for Django and WordPress [2].

Date Modifications

in files

 Date Modifications

in files

05-
April-
2019

8

05-
Oct-
2018

3

03-
April-
2019

6 04-
Oct-
2018

1

02-
April-
2019

2 03-
Oct-
2018

2

01-
April-
2019

9 02-
Oct-
2018

6

31-
Mar-
2019

2 01-
Oct-
2018

2

30-
Mar-
2019

6 28-
Sep-
2018

3

29-

Mar-
2019

15 23-

Sep-
2018

4

28-
Mar-
2019

3 28-
Sep-
2018

1

Figure.10. Trend Line Analysis of Django usingModifications in Files.

Figure 11. Trend Line Analysis of Django usingModifications in Files.

0

50000

100000

150000

200000

N
u

m
b

e
r
 C

o
m

m
e
n

ts

Year

Number of Comments in WordPress

Number of

Comments

in

WordPress

Linear

(Number of

Comments

in

WordPress)

0

50000

100000

150000

200000

N
u

m
b

e
r
 C

o
m

m
e
n

ts

Year

Number of Comments in WordPress

Number of

Comments

in

WordPress

0

5

10

15

20

N
u

m
b

e
r
 o

f
F

il
e
s

Date

Modifcations in Django Web Framework

Modifcations

in files

Linear

(Modifcations

in files)

0

2

4

6

8

N
u

m
b

e
r

o
f

F
il

e
s

Date

Modifcations in files

Modifcations

in files

Linear

(Modifcations

in files)

35

vi. Implementing the Law of Continuing Growth

The following variable is utilized to check the validity of the

law. Evi = LOC. Table10 has contained the information of

Line of the code of both frameworks.

TABLE 10. LOC of Django and WordPress [2].

Year Line of Code Year Line of Code

2012 158140 2012 154021

2013 166569 2013 177154

2014 198748 2014 250957

2015 219740 2015 340677

2016 246711 2016 406262

2017 257331 2017 476241

2018 274325 2018 562664

Figure 13. Trend Line Analysis of WordPress using LOC.

 Figure 12. Trend Line Analysis of Django usingLOC.

Table10.Common Ratio of Django and WordPress Web Frameworks [2].

Year LOC Comments Line Common

Ratio

 Year LOC Comments Line Common

Ratio

2012 158140 2126 1.43% 2012 154021 3559 2.31%

2013 166569 3187 1.91% 2013 177154 3405 1.92%

2014 198748 2792 1.40% 2014 250957 3805 1.51%

2015 219740 2346 1.06% 2015 340677 4636 1.36%

2016 246711 1825 0.73% 2016 406262 2967 0.73%

2017 257331 1555 0.60% 2017 476241 1731 0.36%

2018 274325 1145 0.41% 2018 562664 725 0.12%

0

50000

100000

150000

200000

250000

300000

2
0

1
2

2
0
1
3

2
0

1
4

2
0
1
5

2
0

1
6

2
0

1
7

2
0

1
8

L
in

e
 o

f
C

O
d

e

Year

Django Web Framework

Line of

Code

Linear

(Line

of

Code)

0

100000

200000

300000

400000

500000

600000

L
in

e
 o

f
C

o
d

e

Year

WordPress Web Framework

Line of

Code

Linear (Line

of Code)

vii. Implementing the Law of Declining Quality

 To check the validity of the law of
declining quality, the following formula has been
designed

Evii = Number of comment ratio / Total Line of Code

(or) Evii = NCR/ TLOC

 After calculating the value of Common

Ratio which indicated in table 10. Then the

graphical repsentations(Fig.14 and Fig. 15)
have shown that slight inclination. Due to large

size of applications, it can be assumed that the

quality of both frameworks have not declined

over period of time. Therefore, it did not

validate the law of decelining quality.

36

 Figure 14. Trend Line Analysis of Django usingCommon Ratio.Figure 15. Trend Line Analysis of WordPressress usingCommon Ratio.

viii. Implementing the Law of Feedback System

The following variable has utilized to check the validity of
the law.

Eviii = Growth rate Source Line of code.

Table 11 contains the information of changes in the source
line of code over a period of time with respect to Change and
Fig. 16 and Fig. 17 displayed variations in trend line analysis.
Conclusively, It has been concluded that the feedback system
did not affect the growth of both frameworks. Therefore, the
law did not validate.

Table 11. Changes in the LOC for Django and WordPress [2].

Year LOC Increase/

Decrease in

LOC

 Year LOC Increase/

Decrease

in LOC

2012 158140 23518 2012 154021 15119

2013 166569 8429 2013 177154 23133

2014 198748 32215 2014 250957 73803

2015 219740 20992 2015 340677 89720

2016 246711 26971 2016 406262 65585

2017 257331 10620 2017 476241 69979

2018 274325 16994 2018 562664 86423

Figure 16. Trend Line Analysis of Django usingIncremental Changes.

Figure 17. Trend Line Analysis of Django usingIncremental Changes.

Due to the large size of the application, it cannot assume

that the feedback system creates a negative impact on the

growth of the frameworks. Therefore, The Law is not

considered to be validated.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

C
o
m

m
o
n

 R
a
ti

o

Year

Django Web Framework

Common

Ratio

Linear

(Common

Ratio)

0

5000

10000

15000

20000

25000

30000

35000
G

r
o
w

th
 i

n
 L

O
C

 P
e
r
 Y

e
a
r

Year

Django Web Framework

Increase/

Decrease

in LOC

Linear

(Increase/

Decrease

in LOC)

0

20000

40000

60000

80000

100000

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

G
r
o
w

th
 i

n
 L

O
C

 P
e
r
 Y

e
a

r

Year

WordPress Web Framework

Increase/

Decrease

in LOC

Linear

(Increase

/Decreas

e in

LOC)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

C
o
m

m
o
n

 R
a
ti

o

Year

WordPress Web Framewoek

Common

Ratio

Linear

(Common

Ratio)

37

The summary of findings against each Law on selected
web applications is summarized here in table 12.

TABLE 12. Summary of findings against each law.

Law Name Description Findings

1 Continuing

Change

Software changes
over a period of
time

Validated

2 Increasing

Complexity

Complexity is
also increased

Validated

3 Self-Regulation Software
evolution should
be self-regulated.

Validated.

4

Conservation of

Organizational

Stability.

During Software
evolution,
Organizational
cannot lose its
stability

Validated

5

Conservation of

Familiarity

Evolution process
cannot affect the
familiarity of
software.

Validated

6

Continuing

Growth

During evolution
Process, it may
increase the
growth

Validated

7 Declining

Quality

During the
Evolution
Process, it cannot
lose its quality

Not

Validated

8

Feedback

System

The feedback
system can
decrease the
growth of
software system

Not

Validated

IX. CONCLUSION

The purposed study was designed to fulfill the gap

between web evolution. Three different web applications

Django, Catalyst, and WordPress have been evolved using

Lehman’s all eight laws. Convulsive results have been

found after measuring the software metrics such as Source

Line of code (SLOC), Days Between Releases (DBR),

Comments line, Common Ratio (CR). It has been found that

the six out of eight Lehman’s laws have been validated by

the selected web application. These laws include Law I (law

of continuing change), Law II (Increasing Complexity), Law

III (Self-Regulation), Law IV (Conservation of
Organizational Stability) and Law V (Conservation of

Familiarity) and Law VI (Continuing Growth). Two Laws

such as Law VII (Declining Quality) and Law VIII

(Feedback System) did not support the selected web

applications.

ACKNOWLEDGMENT

This issue is conducted at the platform of Riphah

International University Islamabad (Faisalabad Campus).

REFERENCES

[1] WordPress Web Design For Dummies. New York: John

Wiley & Sons Inc, 2013.
[2] "Open Hub, the open source network", Openhub.net,

2019. [Online]. Available: https://www.openhub.net.
[Accessed: 02- Apr- 2019].

[3] T. Amanatidis and A. Chatzigeorgiou, "Studying the
evolution of PHP web applications", Information and
Software Technology, vol. 72, pp. 48-67, 2016.

[4] L. Prechelt, I. Universit, and K. Germany, “Are Scripting
Languages Any Good ? A Validation of Perl, Python,

Rexx, and Tcl against C, C + +, and Java,” n: Advances in
Computers, Academic Press, San Diego, vol. 58, pp. 1–
62, 2002.

[5] A. Ortiz, "Web development with Python and Django
(abstract only)", Proceedings of the 43rd ACM technical
symposium on Computer Science Education - SIGCSE '12,
2012.

[6] A. Rio and F. e Abreu, "Analyzing web applications

quality evolution", 2017 12th Iberian Conference on
Information Systems and Technologies (CISTI), 2017.
Available: 10.23919/cisti.2017.7975959.
J.K. Ousterhout, “Scripting: higher level programming for
the 21st century,” Info.Softw. Technology. Vol. 72,pp.48-
67,2016.

[7] S.Aprana, A.Mishra, "A Systematic Review on measuring
and evaluating web usability in Model-Driven Web

Development", International Journal of Engineering
Development and Research (IJEDR), ISSN:2321-9939,
Volume.2, Issue NCETSE Conference, pp.171-180,
March 2014.

[8] .S. Tillsey, "15 Years of web systems evolution," 2013
15th IEEE International Symposium on Web Systems
Evolution (WSE), Eindhoven, pp. 3-4,2011.

[9] W. Hall and T. Tiropanis, "Web evolution and Web

Science", Computer Networks, vol. 56, no. 18, pp. 3859-
3865, 2012. Available: 10.1016/j.comnet.2012.10.004.

[10] A. Baravalle, C. Boldyreff, A. Capiluppi, and R. Marques,
"On the sustainability of web systems evolution," 2013
15th IEEE International Symposium on Web Systems
Evolution (WSE), Eindhoven, 2013, pp. 31-34.

[11] G. Di Lucca, A. Fasolino and P. Tramontana, "Reverse
engineering Web applications: the WARE approach",
Journal of Software Maintenance and Evolution:

Research and Practice, vol. 16, no. 12, pp. 71-101, 2004.
[12] A. Baravalle, C. Boldyreff, A. Capiluppi, and R. Marques,

"On the sustainability of web systems evolution," 2013
15th IEEE International Symposium on Web Systems
Evolution (WSE), Eindhoven, 2013, pp. 31-34.

38

[13] D. Fetterly, M. Manasse, M. Najork and J. Wiener, "A
large-scale study of the evolution of Web pages",
Software: Practice and Experience, vol. 34, no. 2, pp.
213-237, 2004.

[14] J. R. M. Camilo, A. L. Erario, and J. A. Fabri, “A Process
for Distributed Software Evolution A proprietary software
case study,” Proceedings of the 13th International
Conference on Global Software Engineering, Gothenburg,

Sweden, pp. 44–53, 2018
[15] A. Talai and Z. E. Bouras, “Software evolution based

activity diagrams,” ICIT 2017 - 8th Int. Conf. Inf.
Technol. Proc., no. 1995, pp. 82–88, 2017.

[16] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk,
“Continuous, evolutionary and large-scale: A new
perspective for automated mobile app testing,” Proc. -
2017 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2017,

pp. 399–410, 2017.
[17] Y. Higo and S. Kusumoto, “Flattening code for metrics

measurement and analysis,” Proc. - 2017 IEEE Int. Conf.
Softw. Maint. Evol. ICSME 2017, pp. 494–498, 2017.

[18] M. Gupta, “Improving Software Maintenance Using
Process Mining and Predictive Analytics,” 2017 IEEE Int.
Conf. Softw. Maint. Evol., pp. 681–686, 2017.

[19] G. Destefanis, M. Ortu, S. Porru, S. Swift, and M.
Marchesi, A Statistical Comparison of Java and Python

Software Metric Properties, the International Workshop
on Emerging Trends in Software Metrics, WETSoM
2016. Association for Computing Machinery, Inc. 2016.

[20] K. Aggarwal, A. Hindle, and E. Stroulia, “GreenAdvisor :
A Tool for Analyzing the Impact of Software Evolution
on Energy Consumption,” IEEE International Conference
on Software Maintenance and Evolution (ICSME) pp.
311–320, 2015.

[21] T. Chaikalis, E. Ligu, G. Melas, and A. Chatzigeorgiou,
SEAgle : Effortless Software Evolution Analysis, ICSME
pp. 582–585, 2014.

[22] M. D. Syer, “The Maintenance and Evolution of Field-
Representative Performance Tests,” 2014 IEEE Int. Conf.
Softw. Maint. Evol., pp. 665–665, 2014.

[23] V. Rajlich, Software evolution, and maintenance,
Proceedings of the on Future of Software Engineering,

pp. 133-144, 2014.
[24] P. Kyriakakis and A. Chatzigeorgiou, Maintenance

Patterns of large-scale PHP Web Applications, IEEE
International Conference on Software Maintenance and
Evolution Maintenance, pp.381-390, 2014.

[25] K. Duran, G. Burns, and P. Snell, “Lehman’s laws in agile
and non-Agile projects,” Proc. - Work. Conf. Reverse
Eng. WCRE, pp. 292–300, 2013.

[26] C. F. Kemerer and S. Slaughter, “An empirical approach
to studying software evolution,” IEEE Trans. Softw. Eng.,
vol. 25, no. 4, pp. 493–509, 1999.

[27] M. W. Godfrey and Q. T. Q. Tu, “Evolution in open
source software: a case study,” Softw. Maintenance, 2000.
Proceedings. Int. Conf., pp. 131–142, 2000.

[28] I. Neamtiu, G. Xie, and J. Chen, “Towards a better
understanding of software evolution: An empirical study
on open-source software,” J. Softw. Evol. The process,

vol. 25, no. 3, pp. 193–218, 2013.

[29] A. Capiluppi, "An Empirical Study of the Evolution of an
Agile Developed Software System", Proc. 29th Int'l Conf.
Software Eng. (ICSE 07), pp. 511-518, 2007.

[30] R. Sindhgatta, N. C. Narendra, and B. Sengupta,
“Software Evolution in Agile Development: A Case
Study,” SBIE - Simpósio Bras. Informática na Educ., pp.
105–114, 2010.

 [31] R.P. Oliveira, E.S. Almeida, G.S.S. Gomes, "Evaluating

Lehman's Laws of Software Evolution within Software
Product Lines: A Preliminary Empirical Study", Proc.
14th Int’l Conf. Software Reuse, pp. 42-57, 2015.

[32] B. Singh and P. Luthra, “Study of Lehman’s Laws and
Metrics during Software Evolution,” Int. J. Comput. Syst.,
vol. 226, no. 06, pp. 2394–1065, 2394.

[33] [34] T. Mens, S. Demeyer, M. Wermelinger, R.
Hirschfeld, S. Ducasse, and M. Jazayeri, “Challenges in

software evolution,” Int. Work. Princ. Softw. Evol., vol.
2005, pp. 13–22, 2005.

[34] D. Kafura and G. R. Reddy, “The Use of Software
Complexity Metrics in Software Maintenance,” IEEE
Trans. Softw. Eng., vol. SE-13, no. 3, pp. 335–343, 1987

[35] A. Michael, “Empirical Study of Cyclomatic Complexity
and Interface Complexity of Evolving Open Source
Systems,” Daffodil International University Journal of
Sciences and Technology, vol. 12, no. 1, 2017.

[36] T. Kaur, Applicability of Lehman Laws on Open Source
Evolution : A Case study Applicability of Lehman Laws
on Open Source Evolution : A Case study, International
Journal of Computer Applications,93(18):40-46, May
2014.

[37] Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source
databases: within, outside, or beyond Lehman’s laws of
software evolution? In: Jarke, M., Mylopoulos, J., Quix,

C., Rolland, C., Manolopoulos, Y., Mouratidis, H.,
Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp.
379–393. Springer, Heidelberg (2014).

 [38] Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-
Barahona, J.M.: The evolution of the laws of software
evolution: a discussion based on a systematic literature
review. ACM Comput. Surv. 46(2), 1–28 (2013).

[39] J. Zhang, S. Sagar, and E. Shihab, “The evolution of

mobile apps: an exploratory study,” Proc. 2013 Int. Work.
Softw. Dev. Lifecycle Mob. - DeMobile 2013, pp. 1–8,
2013.

[40] O.Oluwagbemi, A. Adewumi, and L.Fernandez-sanz, An
Analysis of Scripting Languages for Research in Applied
Computing,” Conference on Computational Sciences and
Engineering, pp 174-179 (2013).

[41] L. Yu, A. Mishra, "An empirical study of Lehman's law

on software quality evolution", International Journal of
Software & Informatics, vol. 7, no. 3, pp. 469-481, 2013.

[42] L.A. Belday & M. M. Lehman, “A model of large
program development,” BM Syst. J., vol. 15, pp. no. 3, pp.
225–252, 1976.

[43] M. M. Lehman, “Laws of software evolution revisited,”
Lect. Notes Comput. Sci. (including Subsea. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 1149, pp.
108–124, 1996.

39

 [44] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry,
and W. M. Turski, “Metrics and laws of software
evolution-the nineties view,” Proc. Fourth Int. Softw.
Metrics Symp., pp. 20–32, 1997.

	I. Introduction
	II. Related work
	III. The contribution of meir manny lehman for software evolution
	IV. Research question
	V. Criteria for selecting cases
	VI. Software metrics for data analysis
	VII. Statistical analysis of data
	VIII. Results and discussion
	IX. Conclusion

